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Abstract

Parametric partial differential equations are commonly used to model physical systems. They also

arise when Wiener chaos expansions are used as an alternative to Monte Carlo when solving stochastic

elliptic problems. This paper considers a model class of second order, linear, parametric, elliptic PDEs in

a bounded domain D with coefficients depending on possibly countably many parameters. It shows that

the dependence of the solution on the parameters in the diffusion coefficient is analytically smooth. This

analyticity is then exploited to prove that under very weak assumptions on the diffusion coefficients,

the entire family of solutions to such equations can be simultaneously approximated by multivariate

polynomials (in the parameters) with coefficients taking values in the Hilbert space V = H1
0 (D) of weak

solutions of the elliptic problem with a controlled number of terms N . The convergence rate in terms of

N does not depend on the number of parameters in V which may be countable, therefore breaking the

curse of dimensionality. The discretization of the coefficients from a family of continuous, piecewise linear

Finite Element functions in D is shown to yield finite dimensional approximations whose convergence

rate in terms of the overall number Ndof of degrees of freedom is the minimum of the convergence rates

afforded by the best N -term sequence approximations in the parameter space and the rate of Finite

Element approximations in D for a single instance of the parametric problem.

1 Introduction

1.1 A class of parametric PDE’s

This paper is concerned with simultaneously solving a family of elliptic equations on a bounded Lipschitz
domain D ⊂ Rd of the form

−∇ · (a∇u) = f in D, u|∂D = 0, (1.1)

where the diffusion coefficients a(x, y) are functions of x = (x1, . . . , xd) ∈ D and of parameters y = (y1, y2, . . .)
which may be finite or infinite in number. The right hand side f is a fixed function on D, and the gradient
operator ∇ is taken with respect to x. The solution u(x, y) also depends on these variables. Parametric
problems of this type arise in modeling complex systems in various contexts:
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chair of the Foundation “Science Mathématiques de Paris” awarded to Ronald DeVore in 2009. This publication is based

on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).

Research supported in part by the Swiss National Science Foundation under Grant No. 200021-120290/1 and by the European

Research Council under grant 247277

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
31 MAY 2010 2. REPORT TYPE 

3. DATES COVERED 
    

4. TITLE AND SUBTITLE 
Analytic regularity and polynomial approximation of parametric and
stochastic elliptic PDEs 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Albert Cohen,UPMC Univ Paris 06, UMR 7598, Laboratoire
Jacques-Louis Lions, F-75005,Paris, France, , , 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

30 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



• Stochastic modelling: the parameters y are realizations of random variables which account for the
fact that the diffusion coefficient is not known exactly and is therefore modelled as a random field.
The user is interested in the resulting statistical properties of the solution u, such as the mathematical
expectation ū(x) := E(u(x)) or the solution’s two-point correlation Cu(x, x′) := E((u(x)−ū(x))(u(x′)−
ū(x′))). This is the point of view adopted for example in [14, 16, 4, 13, 3, 18, 19].

• Deterministic modelling: the parameters y are known or controlled by the user, who is interested in
studying the dependence of u with respect to these parameters for various purposes (for example,
optimizing an output of the equation with respect to y). This is the point of view adopted for example
in [7, 17].

A major idea for solving such families of equations is to exploit the fact that the solution depends smoothly
on the coefficient a. Using this smooth dependence, the hope is to show that one can simultaneously solve the
entire parametric family of equations to an accuracy ε, with reasonable computation cost regardless of the
number of involved parameters, therefore not exhibiting the curse of dimensionality. The main goal of this
paper is to give theoretical results which support this viewpoint. Namely, we shall prove that under very
minimal assumptions on a(x, y), the solution u(x, y) has a power series representation in y with suitably
decaying coefficients. We shall give a quantitative theory which describes how many terms of such an
expansion are necessary to capture the solution to a given tolerance ε.

In order to formulate our results, we begin by recalling a few standard results for elliptic equations of the
form (1.1). To begin our discussion, let us first consider the case where we want to solve only one equation,
i.e. a(x, z) = α(x) depends only on x ∈ D. Central to elliptic theory is the Sobolev space V := H1

0 (D),
called the energy space, which is the set of all functions v whose trace vanishes on the boundary of D and
whose energy norm ‖v‖V := ‖∇v‖L2(D) is finite. The dual of V is denoted by V ∗ = H−1(D). The solution
of (1.1) is defined for any f ∈ V ∗ in weak form as a function u ∈ V which satisfies∫

D

α(x)∇u(x) · ∇v(x)dx =
∫
D

f(x)v(x)dx. for all v ∈ V, (1.2)

Under the assumption that
0 < r ≤ α(x) ≤ R <∞, x ∈ D, (1.3)

the Lax-Milgram Lemma ensures the existence and uniqueness of the solution u of (1.2) in V . Moreover,
this solution satisfies the a-priori estimate

‖u‖V ≤
‖f‖V ∗
r

. (1.4)

Of key importance to further development is the fact that Lax-Milgram theory can be extended to the case
where the coefficient function α is complex valued. In this case, the ellipticity assumption (1.3) should be
replaced by

0 < r ≤ <(α(x)) ≤ |α(x)| ≤ R <∞, x ∈ D. (1.5)

and all the above results remain valid with the usual extension of Sobolev spaces to complex valued functions.
With these facts in hand, let us return to our main interest, which is to solve the family of elliptic

equations (1.1). Rather than striving for utmost generality, we consider affine dependence of a with respect
to y, which means that the parameters yj are the coefficients of the function a in some formal series expansion

a(x, y) = ā(x) +
∞∑
j=1

yjψj(x), x ∈ D, (1.6)
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where ā ∈ L∞(D) and {ψj}j≥1 ⊂ L∞(D). The sequence {ψj}j≥1 could either be given to us by the physical
system we are modeling or its choice could be at our discretion. For example, a typical choice for the {ψj}
in the stochastic context are the elements of the Karhúnen-Loève basis, which means that ā is the average
of a and that the yj are pairwise decorrelated random variables, but we may as well choose other bases such
as wavelets. In certain models where the parameters are finitely many, the sequence {ψj}j≥1 may not be a
complete basis of L2(D). For example in the case where a is piecewise constant with respect to a partition
of the domain D = D1 ∪ . . . ∪DK into measurable sets, it is then natural to represent it as

a(x, y) = ā(x) +
K∑
j=1

yjψj(x), x ∈ D, (1.7)

where ā(x) is itself piecewise constant on this partition and ψj := χDj .
We are interested in simultaneously approximating the solutions u(y) to the family of elliptic equations

with the above input parameters. In the decomposition (1.6), we have the choice to either normalize the basis
(e.g., assume they all have norm one in some space) or to normalize the parameters. It is more convenient
for us to do the latter. This leads us to the following assumptions which shall be made throughout:

i) For all j ∈ N : ψj ∈ L∞(D) and ψj(x) is defined for all x ∈ D,

ii) the y = (y1, y2, . . .) to be considered are all in the set U = [−1, 1]N, i.e. the unit ball of the sequence
space `∞(N) (with N replaced by {1, . . . ,K} in the case (1.7) that the number of parameters is finite),

iii) for each a(x, y) to be considered, we have for every x ∈ D and every y ∈ U

a(x, y) = ā(x) +
∑
j≥1

yjψj(x). (1.8)

Under these assumptions, we consider the map y 7→ u(y) from U to V , where u(y) is the solution of (1.1)
with coefficient given by (1.8). We shall work under the assumption that the ellipticity condition (1.3) holds
uniformly for y ∈ U .

Uniform Ellipticity Assumption: there exist 0 < r ≤ R < ∞ such that for all x ∈ D and for all
y ∈ U

0 < r ≤ a(x, y) ≤ R <∞. (1.9)

We refer to assumption (1.9) as UEA(r,R) in the following. In particular, UEA(r,R) implies r ≤ ā(x) ≤ R
for all x ∈ D, since we can choose yj = 0 for all j ∈ N. Also observe that the validity of the lower and upper
inequality in (1.9) for all y ∈ U are respectively equivalent to the conditions that∑

j≥1

|ψj(x)| ≤ ā(x)− r, x ∈ D, (1.10)

and ∑
j≥1

|ψj(x)| ≤ R− ā(x), x ∈ D. (1.11)
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1.2 Previous results

In the paper [9], we have established several results concerning the smoothness and approximation of the
function y 7→ u(y) by multivariate polynomial in y with coefficients in V . To describe these, we introduce
the following standard multivariate notation. We denote the countable set of “finitely supported” sequences
of nonnegative integers by

F := {ν = (ν1, ν2, . . .) : νj ∈ N, and νj 6= 0 for only a finite number of j}. (1.12)

So
|ν| :=

∑
j≥1

|νj | (1.13)

is finite if and only if ν ∈ F . For ν ∈ F supported in {1, . . . , J}, we define the partial derivative

∂νu =
∂|ν|u

∂ν1y1 . . . ∂νJ yJ
,

and the multi-factorial
ν! :=

∏
j≥1

νj ! where 0! := 0.

If α = (αj)j≥1 is a sequence of complex numbers, we define for all ν ∈ F

αν :=
∏
j≥1

α
νj
j ,

where throughout the paper we use the convention 00 := 1. We are interested in the convergence towards
u(y) of the power series ∑

ν∈F
tνy

ν , y ∈ U, (1.14)

where the Taylor coefficients tν ∈ V are defined as

tν :=
1
ν!
∂νu(0), ν ∈ F .

We define the sequence

b := (bj)j≥1, bj :=
‖ψj‖L∞(D)

āmin
, (1.15)

where āmin := infx∈D ā(x). A first set of results of [9] shows that under UEA(r,R), all partial derivatives
of u with respect to y are well defined for all y ∈ U , and satisfy the estimate

‖∂νu(y)‖V ≤
‖f‖V ∗
r
|ν|!

∏
j≥1

(‖ψj‖L∞(D)

amin(y)

)νj
, (1.16)

where amin(y) := infx∈D a(x, y). Since amin(0) = āmin, this estimate implies in particular

‖tν‖V ≤
‖f‖V ∗
r

|ν|!
ν!
bν (1.17)

A second set of results deals with the summability properties of sequences of the type
(
|ν|!
ν! b

ν
)
ν∈F

appearing

in the above estimates. These summability properties are closely linked with those of the sequence b as
expressed by the following result of [9].
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Theorem 1.1 For 0 < p < 1,
(
|ν|!
ν! b

ν
)
ν∈F
∈ `p(F) if and only if (i)

∑
j≥1 bj < 1, and (ii) (bj) ∈ `p(N).

Combining this result with the estimate (1.17), we find as an immediate corollary that if the sequence b is
such that

∑
j≥1 bj < 1 and (bj) ∈ `p(N) for some 0 < p < 1, then the sequence (‖tν‖V )ν∈F belongs to `p(F).

In other words, under the condition that
∑
j≥1 bj < 1, the sequence (‖tν‖V )ν∈F inherits the summability

(or sparsity) of the sequence (‖ψj‖L∞(D))j≥1 (since (bj) ∈ `p(N) if and only if (‖ψj‖L∞(D))j≥1 ∈ `p(N)). In
particular, since it is assumed p < 1 we have (‖tν‖)ν∈F ∈ `1(F) which implies that the power series (1.14)
is summable in V uniformly in y ∈ U and that the sum of this series is indeed u(y).

Let us make some remarks about these results which will help to better understand the motivation
of the present paper. First of all, the good news in this theorem is that it shows that u(x, y) can be
uniformly recovered for all y ∈ U by retaining a controlled number of terms of the expansion (1.14). Namely,
(‖tν‖V ) ∈ `p(F) implies that for each N > 0, there is a finite set ΛN ⊂ F with #(ΛN ) = N (corresponding
to indices of N largest ‖tν‖V ) that satisfies

sup
y∈U
‖u(y)−

∑
ν∈ΛN

tνy
ν‖V ≤

∑
ν /∈ΛN

‖tν‖V ≤ ‖(‖tν‖V )‖`p(F)N
−s, s :=

1
p
− 1. (1.18)

The proof of the second inequality, originally due to Stechkin, is recalled in Section 3.3 of this paper. In
other words, all of the solutions to the family of parametric problems can be simultaneously approximated by
a polynomial in y with coefficients in V with a control on the number of terms in the polynomial expansion.
We have obtained an algebraic convergence rate even when the number of involved parameters is infinite,
showing that our approximation is not prone to the curse of dimensionality.

Another important point is that the assumption (‖ψj‖L∞(D))j≥1 ∈ `p(N) is quite reasonable. It would be
implied by mild regularity assumptions on the coefficients a(x, y) with respect to the x variable. Consider,
for example, univariate problems on D =]− 1, 1[ and the case of a Fourier expansion,

a(x, y) = ā(x) +
∑
k≥0

y2k+1αk cos(2πkx) +
∑
k≥1

y2kβk sin(2πkx)

where (αk)k≥0 and (βk)k≥1 are certain normalizing sequences. It is known that if the function a(·, y)− ā is
in Lip(s, L1) for some s > 1, then its Fourier coefficients satisfy the decay estimate

|y2k+1αk|+ |y2kβk| ≤ C|k|−s, k ≥ 1, y ∈ U

with C depending on the Lip(s, L1)-norm of a(·, y)− ā. Assuming that this norm is bounded independently
of y which is arbitrary in U , this is equivalent to the decay estimate

|αk|+ |βk| ≤ C|k|−s, k ≥ 1,

and therefore
‖ψj‖L∞(D) ≤ Cj−s, j ≥ 1, (1.19)

after suitably reindexing the Fourier basis elements. Therefore, the `p(N) summability of the sequence (bj)j≥1

is ensured when s > 1
p . Results like this persist for higher space dimension d, general domains and other

bases such Karhúnen-Loève (e.g. [21, 20]) and wavelet expansions.
On the negative side, the assumption that

∑
j≥1 bj < 1, which is equivalent to

∑
j≥1 ‖ψj‖L∞(D) < āmin

is quite strong. Indeed, it implies UEA(r,R) with r := āmin −
∑
j≥1 ‖ψj‖L∞(D) > 0 and R = āmax +∑

j≥1 ‖ψj‖L∞(D) < +∞, but it could be quite stronger than UEA(r,R). This is in particular the case when
the supports of the ψj have some disjointness, such as in the wavelet case where only a few of the wavelets
overlap at a given scale, or in the case of characteristic functions of disjoint sets.
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1.3 Objective

This brings to the forefront the question of whether the property that the sequence (‖tν‖V )ν∈F belongs
to `p(F) might hold under the weaker and more natural UEA(r,R). Closely related is the question of
approximating u(y) in (1.14) by partial sums: for finite sets Λ ⊂ F and y ∈ U , we define

SΛu(y) :=
∑
ν∈Λ

tνy
ν ∈ V. (1.20)

We say that a sequence (ΛN )N≥1 ⊂ F of finite sets exhausts F if any finite Λ ⊂ F is contained in all ΛN
for N ≥ N0 with N0 sufficiently large. One purpose of the present paper is to prove the following theorem.

Theorem 1.2 If a(x, y) satisfies UEA(r,R) and if (‖ψj‖L∞(D))j≥1 ∈ `p(N) for some p < 1, then

u(y) =
∑
ν∈F

tνy
ν , y ∈ U, (1.21)

where the functions tν ∈ V are as in (1.14) and (‖tν‖V )ν∈F ∈ `p(F) for the same value of p. The convergence
in (1.21) is to be understood in the following unconditional sense: if (ΛN )N≥1 ⊂ F is any sequence of finite
sets which exhausts F , then the partial sums SΛNu(y) =

∑
ν∈ΛN

tνy
ν satisfy

lim
N→+∞

sup
y∈U
‖u(y)− SΛNu(y)‖V = 0. (1.22)

If ΛN is the set of ν ∈ F corresponding to indices of N largest ‖tν‖V , we have in addition the convergence
rate estimate

sup
y∈U
‖u(y)− SΛNu(y)‖V ≤ ‖(‖tν‖V )‖`p(F)N

−s, s :=
1
p
− 1. (1.23)

Similar to the results in [9], this theorem reveals that the sequence (‖tν‖V )ν∈F inherits the summability
properties of the sequence (‖ψj‖L∞(D))j≥1, however now under the weaker assumption UEA(r,R). The
proof of Theorem 1.2 requires much finer estimates on the ‖tν‖V than (1.17) which was used in [9]. Our
key ingredients for getting such estimates rely on complex analysis. More precisely, we extend the definition
of u(y) to u(z) for the complex variable z = (zj)j≥1 (by using the zj instead of yj in the definition of a by
(1.8)) where each zj has modulus less than 1. Therefore z belongs to the polydisc

U := ⊗j≥1{zj ∈ C : |zj | ≤ 1}. (1.24)

Using (1.10) and (1.11), it is readily seen that when the functions ā and ψj are real valued, then UEA(r,R)
implies that for all x ∈ D and z ∈ U ,

0 < r ≤ <(a(x, z)) ≤ |a(x, z)| ≤ 2R, (1.25)

and therefore the corresponding solution u(z) is well defined in V for all z ∈ U according to the complex
valued version of Lax-Milgram theorem. More generally, we may as well consider an expansion of the form,

a(x, z) = ā+
∑
j≥1

zjψj

where ā and ψj are complex valued functions and replace hypothesis UEA(r,R) by its complex valued
counterpart.
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Uniform Ellipticity Assumption in C : there exist 0 < r ≤ R < ∞ such that for all x ∈ D and
all z ∈ U

0 < r ≤ <(a(x, z)) ≤ |a(x, z)| ≤ R <∞. (1.26)

We refer to (1.26) as UEAC(r,R). We will prove the following complex valued version of Theorem 1.2,
which clearly implies it as a particular case.

Theorem 1.3 If a(x, z) satisfies UEAC(r,R) for some 0 < r ≤ R < ∞, and if (‖ψj‖L∞(D))j≥1 ∈ `p(N)
for some 0 < p < 1, then for all z ∈ U

u(z) =
∑
ν∈F

tνz
ν in V, (1.27)

where tν ∈ V and (‖tν‖V )ν∈F ∈ `p(F) for the same value of p. The convergence in (1.27) is to be understood
in the following unconditional sense: if (ΛN )N≥1 is any sequence of finite sets which exhausts F , the partial
sums SΛNu(z) =

∑
ν∈ΛN

tνz
ν satisfy

lim
N→+∞

sup
z∈U
‖u(z)− SΛNu(z)‖V = 0. (1.28)

If in addition ΛN is the set of ν ∈ F corresponding to indices of the largest ‖tν‖V , we have the convergence
estimate

sup
z∈U
‖u(z)− SΛNu(z)‖V ≤ ‖(‖tν‖V )‖`p(F)N

−s, s :=
1
p
− 1. (1.29)

1.4 Outline of the paper

The analyticity of u with respect to the variable z is discussed in §2, in which we use Cauchy’s integral
formula to derive a general estimate of the form

‖tν‖V ≤
‖f‖V ∗
δ

∏
j≥1

ρ
νj
j ,

where δ > 0, and where (ρj)j≥1 is any sequence of positive numbers such that∑
j≥1

ρj |ψj(x)| ≤ <(ā(x))− δ, x ∈ D.

In order to prove the main Theorem 1.3, we introduce in §3 a particular choice of ρ = (ρj)j≥1 that depends
on ν and satisfies the above constraint with δ = r/2, leading to a corresponding estimate for ‖tν‖V . We
then use this estimate in order to prove the `p summability of the sequence (‖tν‖V )ν∈F .

There is also interest in the validity of expansions like (1.21) when the monomial basis zν is replaced
by other polynomial bases. For example in the analysis of stochastic elliptic problems, certain polynomial
bases (depending on the underlying probability measure describing the stochasticity) may lead to improved
results. This is discussed in [9] where for example it is shown that a tensor product Legendre polynomial
basis gives improved results if the underlying probability measure is Lebesgue measure and if we agree to
measure distortion in a least squares sense. The improvement comes in the form that the assumptions on
the summability of (‖ψj‖L∞(D))j≥1 for a given convergence rate N−s are weaker. Motivated by this, we
show in §4 that a version of Theorem 1.3 holds with respect to tensor product Legendre expansions.

The approximation of u by its partial sum SΛNu(y) is described by the data of N = #(ΛN ) functions tν ∈
V . In practical numerical computations, these functions are themselves approximated by space discretization
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in the x variable, for instance using the Finite Element method. We discuss in §5 the additional error resulting
from such discretizations. For this purpose we introduce a smoothness space W ⊂ V that governs the rate
of convergence of Finite Element methods, and we study the `p summability of the W norms of the Taylor
and Legendre coefficients. Based on this analysis, we introduce a specific choice of ΛN and of Finite Element
spaces Vν that depend on ν ∈ ΛN , and we study the approximation of u by a truncated Taylor series∑
ν∈ΛN

t̃νy
ν with coefficients t̃ν picked from the Vν spaces, as well as by truncated Legendre series with

coefficients picked in the Vν spaces. We show that the convergence rate in terms of the total number of
degrees of freedom Ndof =

∑
ν∈ΛN

dim(Vν) is either the same as when approximating a single instance u(y)
in the V norm, or as when approximating u without space discretization.

In the present work, we only consider the model problem (1.1) and the situation where the coefficients
depend on the parameters in an affine manner. We expect that our general approach based on analyticity
can be useful for more general problems with smooth yet not necessarily affine parameter dependance.

Let us finally stress that the main objective of this paper is to establish approximation results, not to
propose a specific algorithm for computing such approximations. Our results should therefore be considered
as a benchmark for the convergence analysis of numerical methods for the approximation of parametric and
stochastic PDE’s in the x and y variables. The two most commonly used numerical methods are Galerkin
projection [4, 22] and collocation [3, 18, 19]. In order to retrieve the same convergence rates which are proved
in the present paper, such methods need to be developed within an adaptive framework, with the goal of
selecting proper sets ΛN and finite element spaces Vν throughout the numerical computation. This will be
the object of future work.

2 Analyticity of u and estimates of Taylor coefficients

2.1 Domains of holomorphy

Our main vehicle in proving Theorem 1.3 is to exploit the fact if UEAC(r,R) holds, then the map z 7→ u(z) is
a V valued and bounded analytic function in certain domains which are larger than U . For 0 < δ ≤ 2R <∞
we define the set

Aδ = {z ∈ CN : δ ≤ <(a(x, z)) ≤ |a(x, z)| ≤ 2R for every x ∈ D.} (2.1)

Clearly, if UEAC(r,R) holds and if 0 < δ < r, then Aδ contains U . According to the Lax-Milgram theorem,
we also find that for all z ∈ Aδ, there exists a unique solution u(z) ∈ V which satisfies

‖u(z)‖V ≤
‖f‖V ∗
δ

. (2.2)

Our first interest is to establish holomorphy of the map z 7→ u(z) with respect to the countably many
variables zj . This fact stems from the observation that the function u(z) is the solution to the operator
equation A(z)u(z) = f , where the operator A(z) ∈ L(V, V ∗) depends in an affine manner on each variable
zj . To make our presentation more self-contained we give a direct proof. We start from a stability result,
which is also used further in this section.

Lemma 2.1 If u and ũ are solutions of (1.2) with the same right hand side f and with coefficients α and
α̃, respectively, and if these coefficients both satisfy the assumption (1.5), then

‖u− ũ‖V ≤
‖f‖V ∗
r2
‖α− α̃‖L∞(D). (2.3)
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Proof: Subtracting the variational formulations (1.2) for u and ũ, we find that for all v ∈ V ,

0 =
∫
D

α(x)∇u(x) · ∇v(x)dx−
∫
D

α̃(x)∇ũ · ∇v(x)dx

=
∫
D

α(x)(∇u(x)−∇ũ(x)) · ∇v(x)dx+
∫
D

(α− α̃)(x)∇ũ(x) · ∇v(x)dx.
(2.4)

Therefore w = u− ũ is the solution of∫
D

α(x)∇w(x) · ∇v(x)dx = L(v) where L(v) :=
∫
D

(α− α̃)(x)∇ũ(x) · ∇v(x)dx.

Hence

‖w‖V ≤
‖L‖V ∗
r

,

and we obtain (2.3) since

‖L‖V ∗ = max
‖v‖V =1

|L(v)| ≤ ‖α− α̃‖L∞(D)‖ũ‖V ≤ ‖α− α̃‖L∞(D)
‖f‖V ∗
r

.

2

Lemma 2.2 At any z ∈ Aδ, the function z 7→ u(z) admits a complex derivative ∂zju(z) ∈ V with respect to
each variable zj. This derivative is the weak solution of the problem: for z ∈ Aδ, find ∂zju(z) ∈ V such that∫

D

a(x, z)∇∂zju(x, z) · ∇v(x)dx = L0(v) := −
∫
D

ψj(x)∇u(x, z) · ∇v(x)dx, for all v ∈ V. (2.5)

Proof: We fix j ≥ 1 and z ∈ Aδ. We denote by ej the Kronecker sequence with 1 at index j and 0 at other
indices. For h ∈ C|| \ {0} we consider the difference quotient

wh(z) =
u(z + hej)− u(z)

h
∈ V . (2.6)

We notice that this quotient is well defined for h sufficiently small: if |h|‖ψj‖L∞(D) ≤ δ
2 , we clearly have

δ

2
≤ <(a(x, z + hej)) ≤ |a(x, z + hej)| ≤ 2R+

δ

2
, x ∈ D,

and therefore u(z + hej) is well defined as an element of V . For such sufficiently small values of h, we have
for all v ∈ V ,

0 =
∫
D

a(x, z + hej)∇u(x, z + hej) · ∇v(x)dx−
∫
D

a(x, z)∇u(x, z) · ∇v(x)dx

= h

∫
D

a(x, z)∇wh(x, z) · ∇v(x)dx+
∫
D

(a(x, z + hej)− a(x, z))∇u(x, z + hej) · ∇v(x)dx

= h

∫
D

a(x, z)∇wh(x, z) · ∇v(x)dx+ h

∫
D

ψj(x)∇u(x, z + hej) · ∇v(x)dx

9



and therefore wh is the unique solution to the variational problem∫
D

a(x, z)∇wh(x, z) · ∇v(x)dx = Lh(v), for all v ∈ V,

where Lh : v → Lh(v) := −
∫
D

ψj∇u(z+hej)·∇v is a continuous, linear functional on V . The linear functional

Lh(·) varies continuously in V ∗ with h as h tends to 0: indeed, we have for all v ∈ V ,

|Lh(v)− L0(v)| = |
∫
D

ψj(x)(∇u(x, z + hej)−∇u(x, z)) · ∇v(x)dx| ≤ ‖ψj‖L∞(D)‖u(z + hej)− u(z)‖V ‖v‖V ,

and since the stability estimate (2.3) implies

‖u(z + hej)− u(z)‖V = ‖∇u(z + hej)−∇u(z)‖L2(D) ≤ |h|‖ψj‖L∞(D)
4‖f‖V ∗
δ2

,

it follows that Lh converges towards L0 in V ∗ as h→ 0. Therefore wh converges in V towards w0, which is
the solution to ∫

D

a(x, z)∇w0(z) · ∇v = L0(v), for all v ∈ V.

Hence ∂zju(z) = w0 exists in V and is the unique solution of the variational problem (2.5). 2

We further note that Aδ also contains certain polydiscs. Let ρ := (ρj)j≥1 be a sequence of positive
numbers and define

Uρ = ⊗j≥1{zj ∈ C : |zj | ≤ ρj} = {zj ∈ C : z = (zj)j≥1 ; |zj | ≤ ρj}. (2.7)

We say that a sequence ρ = (ρj)j≥1 is δ-admissible if and only if for every x ∈ D∑
j≥1

ρj |ψj(x)| ≤ <(ā(x))− δ. (2.8)

If the sequence ρ is δ-admissible, then the polydisc Uρ is contained in Aδ. Indeed, we have on the one hand
for all z ∈ Uρ and for almost every x ∈ D

<(ā(x, z)) ≥ <(ā(x))−
∑
j≥1

|zjψj(x)| ≥ <(ā(x))−
∑
j≥1

ρj |ψj(x)| ≥ δ,

and on the other hand, for every x ∈ D

|a(x, z)| ≤ |ā(x)|+
∑
j≥1

|zjψj(x)| ≤ |ā(x)|+ <(ā(x))− δ ≤ 2|ā(x)| ≤ 2R,

where we have used the bound |ā(x)| ≤ R which is a trivial consequence of UEAC(r,R).
Similar to (1.10), we notice that the validity of the lower inequality in (1.26) for all z ∈ U is equivalent

to the condition that ∑
j≥1

|ψj(x)| ≤ <(ā(x))− r, x ∈ D. (2.9)

This shows that the constant sequence ρj = 1 is δ-admissible for all 0 < δ ≤ r, and that for δ < r there exist
δ-admissible sequences such that ρj > 1 for all j ≥ 1, i.e. such that the polydisc Uρ is strictly larger than U
in every variable.
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2.2 Convergence of the polynomial expansion of u(z)

As a first consequence of these observations, we prove convergence of the series
∑
ν∈F tνz

ν towards the
function u(z) for a specific summation process, under the condition that the series defining a(x, z) converges
in L∞(D) uniformly over z ∈ U .

Proposition 2.3 If UEAC(r,R) holds for some 0 < r ≤ R <∞ and if

sup
z∈U
‖a(·, z)− ā(·)−

∑
1≤j≤J

zjψj(·)‖L∞(D) → 0 as J →∞ (2.10)

then there exists a sequence of (Λ∗N )N≥1 of finite subsets which exhausts F and such that

lim
N→+∞

sup
z∈U
‖u(z)− SΛ∗N

u(z)‖V = 0.

Proof: For any N > 0, there exists J = J(N) large enough such that

sup
z∈U
‖a(·, z)− ā(·)−

∑
1≤j≤J

zjψj(·)‖L∞(D) ≤
1

2N
r2

‖f‖V ∗
. (2.11)

For such a J and z ∈ U , we define the set EJ = {1, . . . , J} and zEJ which is obtained from z by putting to
0 all entries zj for j > J and leaving them unchanged for j ≤ J . Therefore (2.11) is equivalent to

sup
z∈U
‖a(·, z)− a(·, zEJ )‖L∞(D) ≤

1
2N

r2

‖f‖V ∗
. (2.12)

We then define
uJ(z1, . . . , zJ) = u(zEJ ) (2.13)

Combining (2.12) with the stability estimate of Lemma 2.1, we find that for all z ∈ U

‖u(z)− uJ(z1, . . . , zJ)‖V ≤
‖f‖V ∗
r2

1
2N

r2

‖f‖V ∗
=

1
2N

.

On the other hand, we have seen that the function uJ is holomorphic in an open neighbourhood of the J-
dimensional polydisc ⊗1≤j≤J{zj ∈ C : |zj | ≤ 1}. From standard results on Banach space valued holomorphic
functions (see Proposition 3.5 of [12] or Theorem 2.1.2 of [15]), this implies its analyticity and therefore the
uniform summability of its Taylor series on this polydisc. Therefore there exists K = K(N) large enough
such that if we set

Λ∗N := {ν ∈ F ; |ν| ≤ K and {j : νj 6= 0} ⊂ EJ},

we have
sup
z∈U
‖uJ(z1, . . . , zJ)− SΛ∗N

u(z)‖V ≤
1

2N
,

where we use the fact that SΛ∗N
u(z) = SΛ∗N

uJ(z1, . . . , zJ) since Λ∗N ⊂ EJ . Combining both estimates we
obtain that

sup
z∈U
‖u(z)− SΛ∗N

u(z)‖V ≤
1
N
,

which proves convergence. The exhaustion property of the Λ∗N is ensured by assuming that J(N) and K(N)
are strictly increasing, which is achievable without loss of generality. 2
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2.3 Estimates of the Taylor coefficients

In order to prove Theorem 1.3, we need estimates of the ‖tν‖V . These are given by the following result.

Lemma 2.4 If UEAC(r,R) holds for some 0 < r ≤ R < ∞ and if ρ = (ρj)j≥1 is a δ-admissible sequence
for some 0 < δ < r, then for any ν ∈ F we have the estimate

‖tν‖V ≤
‖f‖V ∗
δ

∏
j≥1

ρ
−νj
j =

‖f‖V ∗
δ

ρ−ν , (2.14)

where we use the convention that t−0 = 1 for any t ≥ 0.

Proof: Let ν = (νj)j≥1 ∈ F and let J = max{j ∈ N : νj 6= 0}. Recalling the function uJ defined by (2.13),
we therefore have

∂νu(0) =
∂|ν|uJ

∂zν11 . . . ∂zνJJ
(0, . . . , 0).

From the assumption that ρ is δ-admissible, we have that

‖uJ(z1, . . . , zJ)‖V ≤
‖f‖V ∗
δ

, (2.15)

for all (z1, . . . , zJ) in the J-dimensional polydisc

Uρ,J := ⊗1≤j≤J{zj ∈ C : |zj | ≤ ρj}. (2.16)

Introducing the sequence ρ̃ defined by

ρ̃j = ρj + ε if j ≤ J, ρ̃j = ρj if j > J, ε :=
δ

2‖
∑
j≤J |ψj |‖L∞(D)

,

it is easily checked that ρ̃ is δ
2 -admissible and therefore Uρ̃ ⊂ A δ

2
. We thus infer from Lemma 2.2 that for

each z ∈ Uρ̃, u is holomorphic in each variable zj .
It follows that uJ is holomorphic in each variable z1, . . . , zJ on the polydisc ⊗1≤j≤J{|zj | < ρ̃j} which is

an open neighbourhood of Uρ,J . We may thus apply the Cauchy formula (Theorem 2.1.2 of [15]) recursively
in each variable zj and write

uJ(z̃1, . . . , z̃J) = (2πi)−J
∫

|z1|=ρ1

. . .

∫
|zJ |=ρJ

uJ(z1, . . . , zJ)
(z̃1 − z1) . . . (z̃J − zJ)

/z1 . . . dzJ .

By differentiation, this yields

∂|ν|

∂zν11 . . . ∂zνJJ
uJ(0, . . . , 0) = ν!(2πi)−J

∫
|z1|=ρ1

. . .

∫
|zJ |=ρJ

uJ(z1, . . . , zJ)
zν11 . . . zνJJ

dz1 . . . dzJ ,

and therefore, using (2.15), we obtain the estimate∥∥∥∥ ∂|ν|uJ
∂zν11 . . . ∂zνJJ

(0, . . . , 0)
∥∥∥∥
V

≤ ν!
‖f‖V ∗
δ

∏
j≤J

ρ
−νj
j ,

which is equivalent to (2.14). 2
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For a given ν ∈ F , we may search for the best bound provided by Lemma 2.4. This bound is given by

‖tν‖ ≤ inf
0<δ≤r

{
‖f‖V ∗
δ

inf{ρ−ν ; ρ is δ-admissible}
}
.

The infimum is not easily computable. In particular, for a given δ such that 0 < δ < r, the minimization
problem

inf{ρ−ν ; ρ is δ-admissible},

does not have a simple explicit solution due to the form of the constraint∑
j≥1

ρj |ψj(x)| ≤ <(ā(x))− δ, x ∈ D,

that generally couples all values of ρj . Only in the particular case (1.7) where the ψj have disjoint supports,
one may decouple the search of the optimal ρj which is then given by

ρ∗j = min
x∈D

<(ā(x))− δ
|ψj(x)|

.

Note that in this case, the optimal sequence ρ∗ is independent of ν. In the general case where the supports
of ψj overlap, the optimal sequence ρ∗ should vary with ν.

Since this optimal sequence is not accessible to us, our strategy for proving Theorem 1.3 is to carefully
design for each ν a certain sequence ρ = ρ(ν) which satisfies the constraint of δ-admissibility, and use the
resulting estimate in order to prove that (‖tν‖V )ν∈F ∈ `p(F).

3 Proof of Theorem 1.3

3.1 A choice of r
2
-admissible sequences

From now on, we work with the particular choice δ = r
2 . Therefore, the estimate (2.14) of Lemma 2.4 takes

the form

‖tν‖V ≤
2‖f‖V ∗

r

∏
j≥1

ρ
−νj
j =

2‖f‖V ∗
r

ρ−ν , (3.1)

for all r
2 -admissible sequence ρ.

Given ν ∈ F , we have at our disposal the ability to choose the sequence ρ tailored to ν as long as it is
r
2 -admissible. To begin this choice, we first choose J0 large enough such that∑

j>J0

‖ψj‖L∞(D) ≤
r

12
, (3.2)

Such a J0 exists under the assumptions of Theorem 1.3 because (‖ψj‖L∞(D))j≥1 ∈ `p ⊂ `1. Note that we
may always assume (and will do so in what follows) that up to some reindexing of the basis elements ψj the
sequence (‖ψj‖L∞)j≥1 is non-increasing. We first split N into the two sets E := {1 ≤ j ≤ J0} and F :=
N\E. Next we choose κ > 1 such that

(κ− 1)
∑
j≤J0

‖ψj‖L∞(D) ≤
r

4
. (3.3)

For our given ν we shall use the sequence ρ defined by

ρj := κ, j ∈ E; ρj := max{1, rνj
4|νF |‖ψj‖L∞(D)

}, j ∈ F (3.4)
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where we use the notation νE for the restriction of ν to a set E and as before | · | denotes the `1 norm so
that |νF | :=

∑
j>J0

νj . We also make the convention that νj
|νF | = 0 when |νF | = 0. Let us verify that the

sequence ρ defined in (3.4) is r
2 -admissible. To do so, we estimate for every x ∈ D∑

j≥1

ρj |ψj(x)| ≤ κ
∑
j≤J0

|ψj(x)|+
∑
j>J0

max{1, rνj
4|νF |‖ψj‖L∞(D)

}|ψj(x)|

≤ (κ− 1)
∑
j≤J0

|ψj(x)|+
∑
j≤J0

|ψj(x)|+
∑
j>J0

|ψj(x)|+ r

4

≤ r

4
+
∑
j≥1

|ψj(x)|+ r

4

≤ <(ā(x))− r
2 ,

where the last inequality uses (2.9) which follows from UEAC(r,R). The bound (3.1) is therefore valid for
this particular sequence ρ, and it can be rewritten as

‖tν‖V ≤
2‖f‖V ∗

r

(∏
j∈E

ηνj
)(∏

j∈F

( |νF |dj
νj

)νj)
. (3.5)

where η := 1
κ < 1 and

dj :=
4‖ψj‖L∞

r
.

In the second product on the right hand side of (3.5), we use the convention that a factor equals 1 if νj = 0.
Observe that from (3.2), we have

‖d‖`1 =
∑
j>J0

dj ≤
1
3
. (3.6)

3.2 Proof of `p-summability

The estimate (3.5) has the general form

‖tν‖V ≤ Crα(νE)β(νF ). (3.7)

Let FE (respectively FF ) be the collection of ν ∈ F that are supported on E (respectively on F ). Then, for
any 0 < p <∞, we have∑

ν∈F
‖tν‖pV ≤ C

p
r

∑
ν∈F

α(νE)pβ(νF )p = Cpr

( ∑
ν∈FE

α(ν)p
)( ∑

ν∈FF

β(ν)p
)

=: Cpr AE AF . (3.8)

In our particular setting, the first factor AE is easily estimated by factorization:

AE =
∑
ν∈FE

α(ν)p =
∑
ν∈FE

∏
j∈E

ηpνj =
∏
j∈E

(
∑
n≥0

ηnp) =
( 1

1− ηp
)J0

<∞. (3.9)

So we are left with showing that AF is finite. In our particular setting, we have

β(ν) :=
∏
j∈F

( |νF |dj
νj

)νj
≤ |νF ||νF |∏

j∈F ν
νj
j

dνF , ν ∈ FF , (3.10)
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where we have used the notation dνF =
∏
j∈F d

νj
j and our convention that 00 = 1. We first transform the

quantities of the form nn into n! by using Stirling type estimates: for all n ≥ 1, we have

n!en

e
√
n
≤ nn ≤ n!en√

2π
√
n
. (3.11)

Using the right inequality in (3.11) without even using the factor
√

2π
√
n, we obtain

|νF ||νF | ≤ |νF |!e|νF |.

On the other hand, using the left inequality in (3.11), we obtain∏
j∈F

ν
νj
j ≥

νF !e|νF |∏
j∈F max{1, e√νj}

.

Injecting these estimates into (3.10) gives

β(ν) ≤ |νF |!
νF !

dνF
∏
j∈F

max{1, e√νj} ≤
|νF |!
νF !

d̄νF , (3.12)

where
d̄j := edj , j ∈ F.

Here we have used the crude bound e
√
n ≤ en for n ≥ 1 to replace max{1, e√νj} by eνj . We notice that

‖d̄‖`1 = e‖d‖`1 ≤
e

3
< 1.

Since d̄ is also `p summable, we may apply Theorem 1.1 with b = d̄, and conclude that AF is finite.

3.3 Summability and convergence rate

We have just shown that the sequence (‖tν‖V )ν∈F is in `p(F) and therefore in `1(F). We prove unconditional
summability by the following standard argument.

Let (ΛN )N≥1 be a sequence of finite sets which exhausts F . We recall the particular sequence (Λ∗N )N≥1

of Proposition 2.3. According to this result, we know that for all ε > 0 there exists M = M(ε) such that

‖u(z)− SΛ∗M
u(z)‖V ≤

ε

2
,

for all z ∈ U . Since (Λ∗N )N≥1 exhausts F , we may also assume that∑
ν /∈Λ∗M

‖tν‖V ≤
ε

2
.

Since (ΛN )N≥1 exhausts F , there exists N0 such that Λ∗M ⊂ ΛN for all N ≥ N0. It follows that for all
N ≥ N0, and every z ∈ U ,

‖u(z)− SΛNu(z)‖V ≤ ‖u(z)− SΛ∗M
u(z)‖V + ‖SΛN\Λ∗Mu(z)‖V ≤

ε

2
+
∑
ν /∈Λ∗M

‖tν‖V ≤ ε.

The convergence rate estimate (1.29) is obtained by writing for any z ∈ U

‖u(z)−
∑
ν∈ΛN

tνz
ν‖V ≤

∑
ν /∈ΛN

‖tν‖V ≤
∑
n>N

γn,
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where ΛN is the set of ν ∈ F corresponding to indices of the largest ‖tν‖V and where (γn)n≥1 is the decreasing
rearrangement of the ‖tν‖V . We then use the observation due to Stechkin that for any 0 < p ≤ q ≤ ∞ and
any N ∈ N (∑

n>N

γqn

) 1
q ≤ N

1
q−

1
p

(∑
n≥1

γpn

) 1
p

. (3.13)

For q <∞ this is easily proved by combining the two estimates∑
n>N

γqn ≤ γ
q−p
N

∑
n>N

γpn ≤ γ
q−p
N

∑
n≥1

γpn and NγpN ≤
∑
n≤N

γpn ≤
∑
n≥1

γpn.

The case q =∞ is a straightforward adaptation. Using (3.13) with q = 1 and 0 < p < 1 we obtain

sup
z∈U
‖u(z)− SΛNu(z)‖V ≤ N−s‖(‖tν‖V )‖`p(F), s :=

1
p
− 1.

We close this section with some remarks on the nature of Theorem 1.3. This theorem states that whenever
UEAC(r,R) is satisfied and if (‖ψj‖L∞(D))j≥1 ∈ `p(N) for some 0 < p < 1, then (‖tν‖V )ν ∈ `p(F). Its
norm, ‖(‖tν‖V )‖`p(F) is the constant in the error bound of best N -term approximation. It depends on
r and on the sequence (‖ψj‖L∞(D))j≥1. However, inspection of the proof of Theorem 1.1 of [9], shows
that this error bound depends on the sequence (ψj)j≥1 not only through its norm ‖(‖ψj‖L∞(D))‖`p(N) as
one might expect, but also through other, rather implicit quantities such as the smallest integer J1 such
that

∑
j>J1

‖ψj‖pL∞(D) < ε where ε in turn depends on r. A more explicit bound only in terms of r and
‖(‖ψj‖L∞(D))‖`p(N) can be obtained if, for example, (‖ψj‖L∞(D))j≥1 ∈ `q(N) for some q < p (see Remark
7.7 in [9]).

4 Tensorized Legendre expansions

4.1 Statement of the result

In this section, we study another analytic expansion of u by changing the monomial basis to a Legendre
basis. Our motivation for doing this is that if we agree to measure goodness of fit in a least squares sense, the
Legendre expansions result in better decay estimates for N term approximation than monomial expansions
(see Theorem 4.1 below).

We will consider two types of Legendre expansions which differ only in their normalization of the basis.
In one variable, the Legendre basis (Pn)n≥0 is usually defined with the L∞ normalization

‖Pn‖L∞([−1,1]) = Pn(1) = 1. (4.1)

We also consider the L2 normalized sequence Ln(t) =
√

2n+ 1Pn(t), which satisifies

1∫
−1

|Ln(t)|2 dt
2

= 1.

It is important to note that L0 = P0 = 1. We continue with our multivariate notation from the previous
sections. For ν ∈ F , we consider the tensorized version of these polynomials

Pν(y) :=
∏
j≥1

Pνj (yj) and Lν(y) :=
∏
j≥1

Lνj (yj). (4.2)
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Note that (Lν)ν∈F is an orthonormal basis of L2(U, dµ) where dµ denotes the tensor product of the (probabil-
ity) measures dyj

2 on [−1, 1] and is therefore a probability measure on U = [−1, 1]N. The probability measure
dµ on U induces for 0 < p ≤ ∞ the measurable spaces Lp(U, dµ), and the Bochner spaces Lp(U, V, dµ) of
µ-measurable mappings from U to V which are p-summable. We use these spaces for p = 2 and for p =∞.

In contrast to the monomial expansion, we restrict our study to the approximation of u(y) by tensorized
Legendre series in U . We shall however make use of the analytic dependence of u(z) on z in the estimation
of the Legendre coefficients. Since u ∈ L∞(U, V, dµ) ⊂ L2(U, V, dµ), it admits unique expansions

u(y) =
∑
ν∈F

uνPν(y) =
∑
ν∈F

vνLν(y), (4.3)

that converge in L2(U, V, dµ), where the coefficients uν , vν ∈ V are defined by

vν :=
∫
U

u(y)Lν(y)dµ(y) and uν :=
(∏
j≥1

(1 + 2νj)
)1/2

vν . (4.4)

The following theorem is the analog to Theorem 1.3 for Legendre expansions.

Theorem 4.1 If a(x, z) satisfies UEAC(r,R) for some 0 < r ≤ R < ∞ and if (‖ψj‖L∞)j≥1 ∈ `p(N) for
some p < 1, then the sequences (‖uν‖V )ν∈F and (‖vν‖V )ν∈F belong to `p(F) for the same value of p. The
Legendre expansions (4.3) converge in L∞(U, V ) in the following sense: if (ΛN )N≥1 is any sequence of finite
sets which exhausts F then the partial sums SΛNu(y) :=

∑
ν∈ΛN

uν(x)Pν(y) =
∑
ν∈ΛN

vν(x)Lν(y) satisfy

lim
N→+∞

sup
y∈U
‖u(y)− SΛNu(y)‖V = 0. (4.5)

If ΛN is the set of ν ∈ F corresponding to indices of the largest ‖uν‖V , we have in addition the convergence
estimate

sup
y∈U
‖u(y)− SΛNu(y)‖V ≤ ‖(‖uν‖V )‖`p(F)N

−s, s :=
1
p
− 1. (4.6)

If ΛN is the set of ν ∈ F corresponding to indices of the largest ‖vν‖V , we have the convergence estimate

‖u− SΛNu‖L2(U,V,dµ) ≤ ‖(‖vν‖V )‖`p(F)N
−s, s :=

1
p
− 1

2
. (4.7)

4.2 Estimates of the Legendre coefficients

In order to prove their `p(F) summability we estimate the quantities ‖uν‖V and ‖vν‖V . By (4.4),

‖uν‖V =
(∏
j≥1

(1 + 2νj)
) 1

2 ‖vν‖V , ν ∈ F . (4.8)

Therefore the ‖vν‖V ≤ ‖uν‖V and it will be sufficient to prove the `p summability of (‖uν‖V )ν∈F .

Lemma 4.2 Assume that UEAC(r,R) holds for some 0 < r ≤ R < ∞. Let ρ = (ρj)j≥1 be a δ-admissible
sequence for some 0 < δ < r that satisfies ρj > 1 for all j such that νj 6= 0. Then for any ν ∈ F we have
the estimate

‖uν‖V ≤
‖f‖V ∗
δ

∏
j≥1,νj 6=0

φ(ρj)(2νj + 1)ρ−νjj , (4.9)

where φ(t) := πt
2(t−1) for t > 1.
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Proof: Let ν = (νj)j≥1 ∈ F be fixed. The coefficient uν ∈ V is given by

uν =
J∏
j=1

(2νj + 1)
∫
U

u(y)Pν(y)dµ(y). (4.10)

In the case ν = 0, the estimate (4.9) is immediate since µ(U) = 1 implies

‖u0‖V = ‖
∫
U

u(y)dµ(y)‖V ≤ sup
y∈U
‖u(y)‖V ≤

‖f‖V ∗
r
≤ ‖f‖V

∗

δ
.

We now assume that ν 6= 0. For notational simplicity we assume that νj 6= 0 for j ≤ J and νj = 0 for
j > J for some integer J ≥ 1. This can always be achieved by reordering the basis (ψj)j≥1. Partitioning the
variable y into

y = (y1, . . . , yJ , y
′), y′ := (yJ+1, yJ+2, . . .) ∈ [−1, 1]N = U,

we may rewrite (4.10) as

uν =
J∏
j=1

(2νj + 1)
∫
U

wν(y′)dµ(y′), (4.11)

where

wν(y′) :=
∫

[−1,1]J

u(y1, . . . , yJ , y
′)

 J∏
j=1

Pνj (yj)

 dy1

2
. . .

dyJ
2
.

For a fixed y′ ∈ U , we now use the holomorphy properties of (z1, . . . , zJ) 7→ u(z1, . . . , zJ , y
′) in order to

evaluate ‖wν(y′)‖V . For this purpose, we introduce for any n∈ N the following function of a single complex
variable w:

Qn(w) :=

1∫
−1

Pn(s)
w − s

ds, |w| > 1, n = 1, 2, . . . , (4.12)

and the multivariate functions

Qν(z1, . . . , zJ) :=
J∏
j=1

Qνj (zj), (4.13)

which are well defined as long as |zj | > 1, whenever νj 6= 0. Following [10] (page 19), we introduce for any
s > 1 the ellipse in the complex plane

Es := {w + w−1

2
; |w| = s},

which has semi-axes of length s+s−1

2 and s−s−1

2 . For our given ρ and ν, let

Eρ,J := ⊗1≤j≤J Eρj

be the tensor product of these ellipses in the variables z1, . . . , zJ .
Note that the ellipse Es and its interior are contained in the closed disc of radius s, and therefore the

polyellipse Eρ,J and its interior are contained in the interior of the polydisc Uρ,J defined in (2.16). Moreover
z = (z1, . . . , zJ , y

′) is contained in Uρ for any (z1, . . . , zJ) in Eρ,J or its interior and any y′ ∈ U . Since [−1, 1]J

is contained in the interior of Eρ,J , we may thus invoke the same holomorphy argument as in the proof of
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Lemma 2.4 and recursively apply Cauchy’s integral formula in each ellipse Eρj in the variables zj , j = 1, ..., J
to obtain for any (y1, . . . , yJ) ∈ [−1, 1]J and any y′ ∈ U ,

u(y1, . . . , yJ , y
′) =

1
(2πi)J

∫
Eρ

u(z1, . . . , zJ , y
′)

(y1 − z1) . . . (yJ − zJ)
dz1 . . . dzJ . (4.14)

Multiplying by
∏J
j=1 Pνj (yj) and integrating over [−1, 1]J with respect to dy1

2 . . . dyJ2 , we therefore obtain

wν(y′) = 2−J
∫
Eρ

u(z1, . . . , zJ , y
′)Qν(z1, . . . , zJ)dz1 . . . dzJ .

Since Eρ,J is contained in Uρ,J , we find that for all

(z1, . . . , zJ) ∈ Eρ,J and y′ ∈ U ⇒ (z1, . . . , zJ , y
′) ∈ Uρ ⇒ ‖u(z1, . . . , zJ , y

′)‖V ≤
‖f‖V ∗
δ

.

Injecting this bound in the above integral we thus obtain

‖wν(y′)‖V ≤
‖f‖V ∗
δ

( J∏
j=1

ρj
2

)
max

(z1,...,zJ )∈Eρ,J
|Qν(z1, . . . , zJ)|,

where we have used the fact that each of the ellipses Eρj has perimeter of length ≤ 2πρj . We now use the
following estimate established at the bottom of page 313 in [10]

max
z∈Et
|Qn(z)| ≤ π t−n

t− 1
,

which yields

max
(z1,...,zJ )∈Eρ,J

|Qν(z1, . . . , zJ)| ≤
J∏
j=1

π ρ
−νj
j

ρj − 1
,

and therefore

‖wν(y′)‖V ≤
‖f‖V ∗
δ

J∏
j=1

φ(ρj)ρ
−νj
j .

Combining this estimate with (4.11), we obtain the lemma. 2

4.3 A choice of r
2
-admissible sequences

We again work with the particular choice δ = r
2 and the estimate (4.9) thus becomes

‖uν‖V ≤
2‖f‖V ∗

r

∏
j≥1,νj 6=0

φ(ρj)(2νj + 1)ρ−νjj , (4.15)

for all r
2 -admissible sequence such that ρj > 1 for all j such that νj 6= 0 This estimate is slightly more

pessimistic than the estimate (3.1) for the monomial series coefficients due to the presence of the factor
φ(ρj)(2νj + 1), but we shall see that this does not affect the final result on `p summability. For this purpose
we slightly modify the choice of the sequence ρ introduced in §3.1.

Namely, we now first fix 1 < κ ≤ 2 such that

(κ− 1)
∑
j≥1

‖ψj‖L∞(D) ≤
r

8
. (4.16)
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With this κ fixed, we now take J0 as the smallest integer such that∑
j>J0

‖ψj‖L∞(D) ≤
r(κ− 1)

18πκ
, (4.17)

and define E and F for this new choice of J0. For j ∈ E we again take ρj = κ but we now define

ρj :=
rνj

4|νF |‖ψj‖L∞(D)
+ 2, ∀j ∈ F such that νj 6= 0, (4.18)

and ρj = 1 if j ∈ F and νj = 0. Let us show that such a ρ is r
2 admissible. To this end, we estimate for

every x ∈ D ∑
j≥1

ρj |ψj(x)| ≤ κ
∑

1≤j≤J0

|ψj(x)|+
∑
j∈F

rνj
4|νF |‖ψj‖L∞(D)

|ψj(x)|+ 2
∑
j>J0

|ψj(x)|

≤ (κ− 1)
∑

1≤j≤J0

|ψj(x)|+
∑

1≤j≤J0

|ψj(x)|+ r

4
+ 2

∑
j>J0

|ψj(x)|

≤ 3r
8

+
∑
j≥1

|ψj(x)|+
∑
j>J0

|ψj(x)|

≤ r

2
+
∑
j≥1

|ψj(x)|,

where for the last inequality we have used∑
j>J0

|ψj(x)| ≤
∑
j>J0

‖ψj‖L∞(D) ≤
r(κ− 1)

18πκ
<
r

8
.

Using (2.9) which follows from UEAC(r,R), we thus obtain for every x ∈ D∑
j≥1

ρj |ψj(x)| ≤ <(ā(x))− r

2
,

and therefore ρ is r
2 admissible. Since we also have that ρj > 1 for all j such that νj 6= 0, the bound (4.15)

is thus valid. With our particular choice of ρ, the estimate (4.15) reads

‖uν‖V ≤
2‖f‖V ∗

r

( ∏
j∈E,νj 6=0

φ(ρj)(2νj + 1)ηνj
)( ∏

j∈F,νj 6=0

φ(ρj)(2νj + 1)(
rνj

4|νF |‖ψj‖L∞(D)
+ 2)−νj

)
, (4.19)

where η := 1
κ < 1. Our next observation is that for all j such that νj 6= 0 we have ρj > κ and therefore

φ(ρj) ≤ Cκ :=
πκ

2(κ− 1)
.

Using the crude estimate Cκ(2n+ 1) ≤ (3Cκ)n for n ≥ 1, we find that (4.19) implies the estimate

‖uν‖V ≤
2‖f‖V
r

( ∏
j∈E,νj 6=0

Cκ(2νj + 1)ηνj
)(∏

j∈F

( |νF |d̃j
νj

)νj)
, (4.20)

where

d̃j :=
12Cκ‖ψj‖L∞(D)

r
.

Using (4.17), we observe that

‖d̃‖`1 =
∑
j>J0

dj ≤
12Cκ
r

∑
j>J0

‖ψj‖L∞(D) ≤
12Cκ
r

r(κ− 1)
18πκ

≤ 1
3
.

20



4.4 Proof of Theorem 4.1

Based on the estimate (4.20), the proof of the `p summability of (‖uν‖V )ν∈F is now very similar to the proof
of the `p summability of (‖tν‖V )ν∈F in Theorem 1.3: we estimate∑

ν∈F
‖uν‖pV ≤ C

p
r ÃEÃF ,

as in (3.8), where ÃE and ÃF are slightly modified versions of the factors AE and AF . The first factor is
given by

ÃE =
∑
ν∈FE

∏
j∈E, νj 6=0

[Cκ(2νj + 1)]pηpνj = SJ0 ,

where
S := 1 + Cpκ

∑
n≥1

(2n+ 1)pηnp <∞.

This gives ÃE < +∞.
The factor ÃF is exactly of the same form as AF with the sequence (dj)j>J0 replaced by (d̃j)j≥1 which

has similar properties. Thus the same argument we used to estimate AF shows that ÃF is finite. We have
thus proved the `p summability of (‖uν‖V )ν∈F and in turn of (‖vν‖V )ν∈F .

We already know that the series
∑
ν∈F uνPν converges in L2(U, V, dµ) towards u, and since∑

ν∈F
‖uνPν‖L∞(U,V ) ≤

∑
ν∈F
‖uν‖V <∞,

this implies the unconditional convergence of this series in L∞(U, V ) in the sense expressed in the statement
of the Theorem. The same of course holds for the series

∑
ν∈F vνLν since it has the same partial sums.

The convergence rate estimate (4.6) is obtained by writing for any y ∈ U

‖u(y)−
∑
ν∈ΛN

uνPν(y)‖V ≤
∑
ν /∈ΛN

‖uν‖V ≤
∑
n>N

γn,

where (γn)n≥1 denotes the decreasing rearrangement of the ‖uν‖V , and then applying (3.13) with q = 1.
The convergence rate estimate (4.7) is obtained by writing

‖u−
∑
ν∈ΛN

uνPν‖2L2(U,V,dµ) ≤
∑
ν /∈ΛN

‖vν‖2V ≤
∑
n>N

γ2
n,

where now (γn)n≥1 denotes the decreasing rearrangement of the ‖vν‖V , and then applying (3.13) with q = 2.

5 Spatial regularity and Finite Element discretization

The results of the previous sections allow us to understand how the functions u(y) may be jointly approxi-
mated for all y ∈ U with a prescribed accuracy by a finite linear combination

∑
ν∈ΛN

tνy
ν ,
∑
ν∈ΛN

uνPν(y)
or
∑
ν∈ΛN

vνLν(y). The numerical realization of such a linear combination would itself involve the approxi-
mation of the tν , uν , vν ∈ V through discretization in D, such as, for example, by the Finite Element method.
Specifically, we consider approximation of u(y) in, for example, a bounded Lipschitz polyhedron D by a one
parameter, affine family of continuous, piecewise linear Finite Element spaces (Vh)h>0 on a shape regular
family of simplicial triangulations of meshwidth h > 0 in the sense of [8] (higher order, isoparametric Finite
Element families in curved domains could equally be considered; we confine our analysis to affine, piecewise
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linear Finite Element families for ease of exposition only). Convergence rates of such Finite Element ap-
proximations are determined by the regularity of u in D. For this, further regularity assumptions on f are
required. Again for ease of exposition, we shall assume f ∈ L2(D) ⊂ V ∗. Then

‖f‖V ∗ ≤ CP ‖f‖L2(D), (5.1)

where CP is the Poincaré constant of D (i.e. CP = 1/
√
λ1 with λ1 being the smallest eigenvalue of the

Dirichlet Laplacian in D). Then the smoothness space W ⊂ V is the space of all solutions to the Dirichlet
problem

−∆u = f in D, u|∂D = 0, (5.2)

with f ∈ L2(D)
W = {v ∈ V : ∆v ∈ L2(D)}. (5.3)

We define the W -(semi) norm and the W -norm by

|v|W = ‖∆v‖L2(D), ‖v‖W := ‖v‖V + |v|W . (5.4)

It is well-known W = H2(D) ∩ V for convex D ⊂ Rd. Then any w ∈ W may be approximated in V

with convergence rate O(h) by continuous, piecewise linear Finite Element approximations on regular quasi-
uniform simplicial partitions of D of meshwidth h (cf. e.g. [8, 6]). Therefore, denoting by M = dim(Vh) ∼
h−d the dimension of the Finite Element space, we have for all w ∈W the convergence rate

inf
vh∈Vh

‖w − vh‖V ≤ CM−
1
d |w|W . (5.5)

More generally, for non-convex polyhedra, the space W is not contained in H2(D), and the convergence rate
as M = dim(Vh)→∞ is reduced to

inf
vh∈Vh

‖w − vh‖V ≤ CtM−t|w|W . (5.6)

with some 0 < t < 1
d . Nevertheless, in the case where D ⊂ R2 is a non-convex polygonal domain, the optimal

approximation rate (5.5) may be retained by suitable isotropic mesh refinement towards the reentrant corners
of ∂D (see [2]). Similar results are available for non-convex Lipschitz polyhedra in R3 with plane faces for
suitable anisotropic mesh refinement towards the reentrant corners and edges of ∂D (see [1]).

We shall prove the following result concerning W norms of the tν , uν and vν and their summability
properties.

Theorem 5.1 Assume that f ∈ L2(D) and that a(x, z) satisfies UEAC(r,R) for some 0 < r ≤ R < ∞.
If both (‖ψj‖L∞(D))j≥1 ∈ `p(N) and (‖∇ψj‖L∞(D))j≥1 ∈ `p(N) for some 0 < p < 1, then (‖tν‖W )ν∈F ,
(‖uν‖W )ν∈F and (‖vν‖W )ν∈F belong to `p(F).

Note that the result for the sequence (‖vν‖W )ν∈F is implied by that for (‖uν‖W )ν∈F due to (4.8). We
shall use Theorem 5.1 for the analysis of convergence of Finite Element discretizations. In order to prove
this theorem, we first study the analyticity properties of z 7→ u(z) as a map with values in W (we refer to
this as W -analyticity). Accordingly, this leads us to estimates on the ‖ · ‖W norms of the coefficients tν and
uν and to their `p summability. Throughout this section, we append assumptions i) - iii) with the additional
assumption: iv) the gradients of the functions ā and ψj , for j ≥ 1, are defined for every x ∈ D and belong
to L∞(D).
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5.1 W -analyticity of u

We start our proof of W -analyticity with the observation that if f ∈ L2(D) and α satisfies the ellipticity
assumption (1.5) and is such ∇α ∈ L∞(D), then the solution u to (1.1) belongs to W . Indeed, from the
identity

−∆u =
1
α

(f +∇α · ∇u), (5.7)

we obtain the estimate

|u|W = ‖∆u‖L2(D) ≤
1
r

(‖f‖L2(D) + ‖∇α‖L∞(D)‖u‖V ) ≤ 1
r

(‖f‖L2(D) + ‖∇α‖L∞(D)
‖f‖V ∗
r

), (5.8)

and therefore,

‖u‖W ≤
1
r

(
1 + CP

(
1 +
‖∇α‖L∞(D)

r

))
‖f‖L2(D). (5.9)

For 0 < δ ≤ 2R and B > 0, we introduce the complex domain

Aδ,B := {z ∈ CN ; δ ≤ <(a(x, z)) ≤ |a(x, z)| ≤ 2R and |∇a(x, z)| ≤ B for all x ∈ D}, (5.10)

where the gradient of a is taken with respect to the x variable. It is readily checked that under the assumptions
of Theorem 5.1, for 0 < δ < r and sufficiently large B the set Aδ,B is non-empty. From (5.9), it is clear that
u(z) ∈W for all z ∈ Aδ,B and

sup
z∈Aδ,B

‖u(z)‖W ≤ Cδ,B :=
1
δ

(
1 + CP

(
1 +

B

δ

))
‖f‖L2(D). (5.11)

We will prove W -analyticity of u on Aδ,B by using once more a difference quotient argument. The bounds
on the difference quotient require the following perturbation result.

Lemma 5.2 Let u and ũ be solutions of (1.2) for the same f ∈ L2(D) with coefficients α and α̃ which satisfy
(1.5), and which, in addition, are such that ∇α and ∇α̃ belong to L∞(D). Then there holds the estimate

|u− ũ|W ≤
1
r

(
‖α− α̃‖L∞(D)|u|W + ‖∇(α− α̃)‖L∞(D)‖u‖V + ‖∇α̃‖L∞(D)‖u− ũ‖V

)
. (5.12)

Proof: We know from (5.9) that u, ũ ∈ W . Moreover, they satisfy α̃∆ũ − α∆u = ∇α · ∇u − ∇α̃ · ∇ũ.
Therefore we get

∆(u− ũ) =
1
α̃

(
(α− α̃)∆u+∇(α− α̃) · ∇u+∇α̃ · ∇(u− ũ)

)
.

Since α̃ satisfies (1.5), we obtain (5.12) by taking the L2 norm of this identity. 2

Lemma 5.3 At any z ∈ Aδ,B, the mapping z 7→ u(z) admits a complex derivative ∂zju(z) ∈W with respect
to each variable zj.

Proof: From the proof of Lemma 2.2, we know that the difference quotient wh(z) is solution to

− div (a(·, z)∇wh) = Lh = ∇ψj · ∇u(z + hej) + ψj∆u(z + hej) ∈ L2(D),

and therefore

−∆wh =
1

a(·, z)

(
∇a(·, z) · ∇wh +∇ψj · ∇u(z + hej) + ψj∆u(z + hej)

)
.
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We already know from Lemma 2.2 that wh converges in V towards w0 = ∂zju(z). Similarly w0 is solution to

−∆w0 =
1

a(·, z)

(
∇a(·, z) · ∇w0 +∇ψj · ∇u(z) + ψj∆u(z)

)
.

Both wh and w0 are therefore in W , and by subtracting the two equations we find that

|wh − w0|W ≤
1
δ

(
B‖wh − w0‖V + ‖∇ψj‖L∞(D)‖u(z + hej)− u(z)‖V + ‖ψj‖L∞(D)|u(z + hej)− u(z)|W

)
.

As h → 0, the three terms on the right hand side tend to 0, by Lemma 2.2, 2.1 and 5.2, respectively. This
completes the proof. 2

5.2 Proof of Theorem 5.1

Analogous to §2.1, we say that a sequence ρ is (δ,B)-admissible if and only if for all x ∈ D,∑
j≥1

ρj |ψj(x)| ≤ <(ā(x))− δ and
∑
j≥1

ρj |∇ψj(x)| ≤ B − ‖∇ā‖L∞(D). (5.13)

It is immediate to check that if ρ is (δ,B)-admissible, then the polydisc Uρ is contained in Aδ,B . This allows
us to establish the following result for estimating the Taylor and Legendre coefficients.

Lemma 5.4 If UEAC(r,R) holds for some 0 < r ≤ R < ∞ and if ρ = (ρj)j≥1 is a (δ,B)-admissible
sequence for some 0 < δ < r and a sufficiently large value of B > 0, then for any ν ∈ F we have the estimate

‖tν‖W ≤ Cδ,Bρ−ν , (5.14)

where Cδ,B is as in (5.11) and where we use the convention that t−0 = 1 for any t ≥ 0. If in addition, the
sequence ρ satisfies ρj > 1 for all j such that νj 6= 0, we have the estimate

‖uν‖W ≤ Cδ,B
∏

j≥1,νj 6=0

φ(ρj)(2νj + 1)ρ−νjj , (5.15)

where φ(t) := πt
2(t−1) for t > 1.

Proof: the proof of (5.14) is the same as that of Lemma 2.4 and the proof of (5.15) is the same as that of
Lemma 4.2, using analyticity and the global bound (5.11). 2

We may now complete the proof of Theorem 5.1. Once again we work with the particular choice δ = r
2 .

In order to prove the `p summability properties announced in Theorem 5.1, we need to slightly modify the
definition of the r

2 -admissible sequences ρ which were proposed in §3.1 and §4.3, since they should now also
satisfy the second condition in (5.13) for some fixed B > 0.

Let us explain this modification in the case of the estimates for the ‖tν‖W . We first choose J0 large
enough such that ∑

j>J0

(‖ψj‖L∞(D) + ‖∇ψj‖L∞(D)) ≤
r

12
, (5.16)

We again split N into the two sets E := {0 < j ≤ J0} and F := N \ E, and we choose κ > 1 such that

(κ− 1)
∑

1≤j≤J0

(‖ψj‖L∞(D) + ‖∇ψj‖L∞(D)) ≤
r

4
, (5.17)
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For our given ν we use the sequence ρ defined by

ρj := κ, j ∈ E; ρj := max{1, rνj
4|νF |(‖ψj‖L∞(D) + ‖∇ψj‖L∞(D))

}, j ∈ F. (5.18)

By the same considerations as in §3.1, we find that∑
j≥1

ρj |ψj(x)| ≤ <(ā(x))− r

2
,

but we also find that for every x ∈ D∑
j≥1

ρj |∇ψj(x)|+ ‖∇ā‖L∞(D) ≤ B := κ
∑

1≤j≤J0

‖∇ψj‖L∞(D) +
∑
j>J0

‖∇ψj‖L∞(D) +
r

4
+ ‖∇ā‖L∞(D). (5.19)

We thus find that ρ = (ρj)j≥1 is ( r2 , B)-admissible with this choice for B. This leads to the estimate

‖tν‖W ≤ C r
2 ,B

(∏
j∈E

ηνj
)(∏

j∈F

( |νF |dj
νj

)νj)
. (5.20)

where η := 1
κ < 1 and

dj := 4
‖ψj‖L∞(D) + ‖∇ψj‖L∞(D)

r
,

satisfies ‖d‖`1 =
∑
j>J0

dj ≤ 1
3 .

From then on, the proof of the `p-summability of the ‖tν‖W is exactly the same as in §3.2, based on
the estimate (5.20). A similar modification of the sequence ρ proposed in §4.3 in the case of the Legendre
coefficients leads to a similar conclusion. The proof of Theorem 5.1 is therefore complete. 2

5.3 Convergence rates of finite element approximations

We finally discuss the approximation of u by a linear combination of the form
∑
ν∈Λ t̃νy

ν ,
∑
ν∈Λ ũνPν(y), or∑

ν∈Λ ṽνLν(y) where Λ ⊂ F is finite and when the coefficients t̃ν , ũν and ṽν are Finite Element approxima-
tions of tν , uν and vν , respectively, from finite element spaces (Vν)ν∈Λ in the one-parameter family (Vh)h>0

in (5.6). As indiated in [9, 5], to achieve optimal approximation rates in terms of the overall number of
degrees of freedom denoted by Ndof , it will be crucial that for given ν ∈ Λ ⊂ F , the approximation space
Vν may depend on ν.

Let us consider the Taylor expansion (1.14). Under the assumptions of Theorem 5.1,

CV := ‖(‖tν‖V )‖`p(F) and CW := ‖(|tν |W )‖`p(F), C̄W := ‖(‖tν‖W )‖`p(F)

are finite. We introduce the vector M = (Mν)ν∈Λ of the dimensions Mν = dimVν , ν ∈ Λ, of the finite
element approximation spaces Vν used for approximating the tν . Note that for a sequence of Finite Element
spaces obtained from successive mesh refinements, not all integers M may arise as dimensions. Moreover,
when optimizing the choice of Mν it will be convenient to allow Mν to take noninteger values in (0,∞). We
assume for now that the error bound (5.6) holds for all such M up to increasing Ct in this bound (we will
ultimately remove this assumption below).

Thus, we express the approximation rate in terms of the total number of degrees of freedom involved in
this approximation:

Ndof :=
∑
ν∈Λ

Mν . (5.21)
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The approximation error in L∞(U, V ) may be estimated by

sup
y∈U
‖u(y)−

∑
ν∈Λ

t̃νy
ν‖V ≤

∑
ν∈Λ

‖tν − t̃ν‖V +
∑
ν /∈Λ

‖tν‖V . (5.22)

The first term in the right hand side of (5.22) corresponds to the error occuring from the finite element
discretization of the tν . According to (5.6), we may find t̃ν ∈ Vν such that

‖tν − t̃ν‖V ≤ CtM−tν |tν |W . (5.23)

For example, we may take for t̃ν the V -orthogonal projection of tν onto Vν .
The second term in the right hand side corresponds to the error incurred by truncating the Taylor series.

By taking Λ := ΛN the set of indices corresponding to N largest ‖tν‖V , it is bounded by∑
ν /∈Λ

‖tν‖V ≤ CVN−s, s :=
1
p
− 1. (5.24)

Therefore, the global error is bounded by

sup
y∈U
‖u(y)−

∑
ν∈ΛN

t̃νy
ν‖V ≤ Ct

∑
ν∈ΛN

M−tν |tν |W + CVN
−s. (5.25)

We now allocate the degrees of freedom Mν in such a way that the total number is minimized for a fixed
contribution Ct

∑
ν∈ΛN

M−tν |tν |W to the error. Since the global error bound (5.22) also contains the term
CVN

−s which is independent of this allocation, it is natural to require that both contributions be of the
same order. We therefore consider the minimization problem

min{
∑
ν∈ΛN

Mν ;
∑
ν∈ΛN

M−tν |tν |W ≤ N−s}. (5.26)

To solve this problem, let us first treat the Mν as continuous variables. Introducing a Lagrange multiplier,
we obtain

Mν = η|tν |
1

1+t
W , (5.27)

for some η > 0 independent of ν ∈ ΛN . Its value is determined by the saturated constraint

N−s =
∑
ν∈ΛN

M−tν |tν |W = η−t
∑
ν∈ΛN

|tν |
1

1+t
W , (5.28)

and therefore

η = N
s
t

( ∑
ν∈ΛN

|tν |
1

1+t
W

) 1
t

. (5.29)

Combining this with (5.27) and summing over ν ∈ ΛN , we find

Ndof = N
s
t

( ∑
ν∈ΛN

|tν |
1

1+t
W

) 1+t
t

. (5.30)

We now distinguish between two cases.

(i) t ≤ s: This also means that p ≤ 1
t+1 and therefore∑

ν∈ΛN

|tν |
1

1+t
W ≤ C

1
1+t
W (5.31)
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for any set ΛN . According to (5.30), we thus have

Ndof ≤ C
1
t

WN
s
t . (5.32)

Combining this with the fact that the global error is controlled by (Ct + CV )N−s, we find

sup
y∈U
‖u(y)−

∑
ν∈ΛN

t̃νy
ν‖V ≤ CN−tdof , (5.33)

where C := (Ct + CV )CW .

(ii) s ≤ t: in this case
∑
ν∈ΛN

|tν |
1

1+t
W may not be uniformly bounded and we estimate it using Hölder’s

inequality that gives ∑
ν∈ΛN

|tν |
1

1+t
W ≤ C

1
1+t
W Nδ, δ := 1− 1

p(1 + t)
> 0.

According to (5.30), we thus have

Ndof ≤ C
1
t

WN
s+(1+t)δ

t = C
1
t

WN. (5.34)

Combining this with the fact that the global error is controlled by (Ct + CV )N−s, we find

sup
y∈U
‖u(y)−

∑
ν∈ΛN

t̃νy
ν‖V ≤ CN−sdof (5.35)

where C := (Ct + CV )CW .

We may summarize as follows the above dichotomy:

• In the first case the rate of convergence N−tdof is governed by the space discretization, since it is the
same as the rate that would occur when approximating a single instance u(z) in the V norm.

• In the second case, the rate of convergence N−sdof is governed by the discretization in the parameter
variable, since it is the same as the rate that would occur without any space discretization.

This analysis therefore reveals that when the index set Λ and the finite element spaces Vν are properly chosen,
then the number of degrees of freedom resulting from space discretization and parameter discretization
essentially do not multiply. This finding corresponds to the error bounds obtained for sparse tensor Finite
Element discretizations in [5] under stronger assumptions.

In the above derivation, however, we assumed Mν to be real-valued. To circumvent this problem, we
assign for such a real-valued Mν the subspace Vν of dimension bMνc. Therefore,

Ndof =
∑
ν∈ΛN

dimVMν ≤
∑
ν∈ΛN

Mν .

However, the approximation error estimate (5.23) is no longer valid, but one easily checks that it can be
replaced by

‖tν − t̃ν‖V ≤ C̄tM−tν ‖tν‖W (5.36)

with C̄t = max{1, 2tCt}. Solving the modified minimization problem

min{
∑
ν∈ΛN

Mν ;
∑
ν∈ΛN

M−tν ‖tν‖W ≤ N−s} (5.37)
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we end up with the same estimates (5.33) and (5.35), now with C := (C̄t + CV )C̄W .
A similar analysis applies to the approximated Legendre expansions

∑
ν∈Λ ũνPν(y) with the error mea-

sured in L∞(U, V ) and
∑
ν∈Λ ṽνLν(y) with the error measured in L2(U, V, dµ). We collect these findings by

the following theorem. We denote by t̃ν , ũν and ṽν the V -projection of tν , uν and vν , respectively, onto Vν .

Theorem 5.5 Assume that the finite element spaces have the approximation property (5.6). Then under
the same assumptions as in Theorem 5.1, the following holds:

(i) With ΛN the set of indices corresponding to N largest ‖tν‖V , there exists a choice of finite element
spaces Vν of dimension Mν , ν ∈ ΛN , such that

sup
y∈U
‖u(y)−

∑
ν∈ΛN

t̃νy
ν‖V ≤ CN−min{s,t}

dof , s :=
1
p
− 1,

where Ndof =
∑
ν∈ΛN

Mν and C = (C̄t + ‖(‖tν‖V )‖`p(F))‖(‖tν‖W )‖`p(F).

(ii) With ΛN the set of indices corresponding to N largest ‖uν‖V , there exists a choice of finite element
spaces Vν of dimension Mν , ν ∈ ΛN , such that

sup
y∈U
‖u(y)−

∑
ν∈ΛN

ũνPν(y)‖V ≤ CN−min{s,t}
dof , s :=

1
p
− 1,

Ndof =
∑
ν∈ΛN

Mν and C = (C̄t + ‖(‖uν‖V )‖`p(F))‖(‖uν‖W )‖`p(F).

(iii) With ΛN the set of indices corresponding to N largest ‖vν‖V , there exists a choice of finite element
spaces Vν of dimension Mν , ν ∈ ΛN , such that

‖u−
∑
ν∈ΛN

ṽνLν‖L2(U,V,dµ) ≤ CN
−min{s,t}
dof , s :=

1
p
− 1

2
,

where Ndof =
∑
ν∈ΛN

Mν and C = (C̄2
t + ‖(‖vν‖V )‖2`p(F))

1
2 ‖(‖vν‖W )‖`p(F).
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